Metamath Proof Explorer


Theorem exexw

Description: Existential quantification is idempotent. Weak version of bj-exexbiex , requiring fewer axioms. (Contributed by Gino Giotto, 4-Nov-2024)

Ref Expression
Hypothesis exexw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion exexw ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 exexw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 1 notbid ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 hba1w ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥𝑥 ¬ 𝜑 )
4 2 spw ( ∀ 𝑥 ¬ 𝜑 → ¬ 𝜑 )
5 4 alimi ( ∀ 𝑥𝑥 ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 )
6 3 5 impbii ( ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥𝑥 ¬ 𝜑 )
7 6 notbii ( ¬ ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝑥 ¬ 𝜑 )
8 df-ex ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
9 2exnaln ( ∃ 𝑥𝑥 𝜑 ↔ ¬ ∀ 𝑥𝑥 ¬ 𝜑 )
10 7 8 9 3bitr4i ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥𝑥 𝜑 )