Step |
Hyp |
Ref |
Expression |
1 |
|
dffo4 |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |
2 |
|
dff4 |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ) ) |
3 |
2
|
simprbi |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ) |
4 |
3
|
anim1i |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |
5 |
1 4
|
sylbi |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |
6 |
5
|
eximi |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |
7 |
|
brinxp |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑓 𝑦 ↔ 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
8 |
7
|
reubidva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ↔ ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
9 |
8
|
biimpd |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 → ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
10 |
9
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) |
11 |
|
inss2 |
⊢ ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) |
12 |
10 11
|
jctil |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 → ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
13 |
|
dff4 |
⊢ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 ⟶ 𝐵 ↔ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
14 |
12 13
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 → ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 ⟶ 𝐵 ) |
15 |
|
rninxp |
⊢ ( ran ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) |
16 |
15
|
biimpri |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 → ran ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
17 |
14 16
|
anim12i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 ⟶ 𝐵 ∧ ran ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ) ) |
18 |
|
dffo2 |
⊢ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 –onto→ 𝐵 ↔ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 ⟶ 𝐵 ∧ ran ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 –onto→ 𝐵 ) |
20 |
|
vex |
⊢ 𝑓 ∈ V |
21 |
20
|
inex1 |
⊢ ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) ∈ V |
22 |
|
foeq1 |
⊢ ( 𝑔 = ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) → ( 𝑔 : 𝐴 –onto→ 𝐵 ↔ ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 –onto→ 𝐵 ) ) |
23 |
21 22
|
spcev |
⊢ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 –onto→ 𝐵 → ∃ 𝑔 𝑔 : 𝐴 –onto→ 𝐵 ) |
24 |
19 23
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ∃ 𝑔 𝑔 : 𝐴 –onto→ 𝐵 ) |
25 |
24
|
exlimiv |
⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ∃ 𝑔 𝑔 : 𝐴 –onto→ 𝐵 ) |
26 |
|
foeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 : 𝐴 –onto→ 𝐵 ↔ 𝑓 : 𝐴 –onto→ 𝐵 ) ) |
27 |
26
|
cbvexvw |
⊢ ( ∃ 𝑔 𝑔 : 𝐴 –onto→ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) |
28 |
25 27
|
sylib |
⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) |
29 |
6 28
|
impbii |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |