Step |
Hyp |
Ref |
Expression |
1 |
|
exidcl.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
rngopidOLD |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺 ) |
3 |
1 2
|
syl5eq |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝑋 = dom dom 𝐺 ) |
4 |
3
|
eleq2d |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝐴 ∈ 𝑋 ↔ 𝐴 ∈ dom dom 𝐺 ) ) |
5 |
3
|
eleq2d |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝐵 ∈ 𝑋 ↔ 𝐵 ∈ dom dom 𝐺 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ↔ ( 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) ) ) |
7 |
6
|
pm5.32i |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ↔ ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) ) ) |
8 |
|
inss1 |
⊢ ( Magma ∩ ExId ) ⊆ Magma |
9 |
8
|
sseli |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 ∈ Magma ) |
10 |
|
eqid |
⊢ dom dom 𝐺 = dom dom 𝐺 |
11 |
10
|
clmgmOLD |
⊢ ( ( 𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
12 |
9 11
|
syl3an1 |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
13 |
12
|
3expb |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
14 |
7 13
|
sylbi |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
15 |
14
|
3impb |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
16 |
3
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑋 = dom dom 𝐺 ) |
17 |
15 16
|
eleqtrrd |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |