Step |
Hyp |
Ref |
Expression |
1 |
|
exidres.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
exidres.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
3 |
|
exidres.3 |
⊢ 𝐻 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) |
4 |
3
|
dmeqi |
⊢ dom 𝐻 = dom ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) |
5 |
|
xpss12 |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) |
6 |
5
|
anidms |
⊢ ( 𝑌 ⊆ 𝑋 → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) |
7 |
1
|
opidon2OLD |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 ) |
8 |
|
fof |
⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) –onto→ 𝑋 → 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
9 |
|
fdm |
⊢ ( 𝐺 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 → dom 𝐺 = ( 𝑋 × 𝑋 ) ) |
10 |
7 8 9
|
3syl |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → dom 𝐺 = ( 𝑋 × 𝑋 ) ) |
11 |
10
|
sseq2d |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ↔ ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
12 |
6 11
|
syl5ibr |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝑌 ⊆ 𝑋 → ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ) ) |
13 |
12
|
imp |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ) |
14 |
|
ssdmres |
⊢ ( ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ↔ dom ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝑌 × 𝑌 ) ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → dom ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝑌 × 𝑌 ) ) |
16 |
4 15
|
syl5eq |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → dom 𝐻 = ( 𝑌 × 𝑌 ) ) |
17 |
16
|
dmeqd |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → dom dom 𝐻 = dom ( 𝑌 × 𝑌 ) ) |
18 |
|
dmxpid |
⊢ dom ( 𝑌 × 𝑌 ) = 𝑌 |
19 |
17 18
|
eqtrdi |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → dom dom 𝐻 = 𝑌 ) |
20 |
19
|
eleq2d |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑈 ∈ dom dom 𝐻 ↔ 𝑈 ∈ 𝑌 ) ) |
21 |
20
|
biimp3ar |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → 𝑈 ∈ dom dom 𝐻 ) |
22 |
|
ssel2 |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
23 |
1 2
|
cmpidelt |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
24 |
22 23
|
sylan2 |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑌 ) ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
25 |
24
|
anassrs |
⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
26 |
25
|
adantrl |
⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) ) → ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
27 |
3
|
oveqi |
⊢ ( 𝑈 𝐻 𝑥 ) = ( 𝑈 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑥 ) |
28 |
|
ovres |
⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑈 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑥 ) = ( 𝑈 𝐺 𝑥 ) ) |
29 |
27 28
|
syl5eq |
⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑈 𝐻 𝑥 ) = ( 𝑈 𝐺 𝑥 ) ) |
30 |
29
|
eqeq1d |
⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ↔ ( 𝑈 𝐺 𝑥 ) = 𝑥 ) ) |
31 |
3
|
oveqi |
⊢ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑈 ) |
32 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑈 ) = ( 𝑥 𝐺 𝑈 ) ) |
33 |
31 32
|
syl5eq |
⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐺 𝑈 ) ) |
34 |
33
|
ancoms |
⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐺 𝑈 ) ) |
35 |
34
|
eqeq1d |
⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ↔ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) |
36 |
30 35
|
anbi12d |
⊢ ( ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) ) → ( ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ↔ ( ( 𝑈 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑈 ) = 𝑥 ) ) ) |
38 |
26 37
|
mpbird |
⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑈 ∈ 𝑌 ∧ 𝑥 ∈ 𝑌 ) ) → ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
39 |
38
|
anassrs |
⊢ ( ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑈 ∈ 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
40 |
39
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
41 |
40
|
3impa |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
42 |
13
|
3adant3 |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑌 × 𝑌 ) ⊆ dom 𝐺 ) |
43 |
42 14
|
sylib |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → dom ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝑌 × 𝑌 ) ) |
44 |
4 43
|
syl5eq |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → dom 𝐻 = ( 𝑌 × 𝑌 ) ) |
45 |
44
|
dmeqd |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → dom dom 𝐻 = dom ( 𝑌 × 𝑌 ) ) |
46 |
45 18
|
eqtrdi |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → dom dom 𝐻 = 𝑌 ) |
47 |
46
|
raleqdv |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑌 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) ) |
48 |
41 47
|
mpbird |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) |
49 |
21 48
|
jca |
⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌 ) → ( 𝑈 ∈ dom dom 𝐻 ∧ ∀ 𝑥 ∈ dom dom 𝐻 ( ( 𝑈 𝐻 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = 𝑥 ) ) ) |