Step |
Hyp |
Ref |
Expression |
1 |
|
exidu1.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
1
|
isexid2 |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |
3 |
|
simpl |
⊢ ( ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑢 𝐺 𝑥 ) = ( 𝑢 𝐺 𝑦 ) ) |
6 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
8 |
7
|
rspcv |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑢 𝐺 𝑥 ) = 𝑥 → ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
9 |
4 8
|
syl5 |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) → ( 𝑢 𝐺 𝑦 ) = 𝑦 ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝑦 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑥 ) → ( 𝑥 𝐺 𝑦 ) = 𝑥 ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑥 ) → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = 𝑥 ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 𝐺 𝑦 ) = ( 𝑢 𝐺 𝑦 ) ) |
13 |
|
id |
⊢ ( 𝑥 = 𝑢 → 𝑥 = 𝑢 ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 𝐺 𝑦 ) = 𝑥 ↔ ( 𝑢 𝐺 𝑦 ) = 𝑢 ) ) |
15 |
14
|
rspcv |
⊢ ( 𝑢 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = 𝑥 → ( 𝑢 𝐺 𝑦 ) = 𝑢 ) ) |
16 |
11 15
|
syl5 |
⊢ ( 𝑢 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑥 ) → ( 𝑢 𝐺 𝑦 ) = 𝑢 ) ) |
17 |
9 16
|
im2anan9r |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑥 ) ) → ( ( 𝑢 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐺 𝑦 ) = 𝑢 ) ) ) |
18 |
|
eqtr2 |
⊢ ( ( ( 𝑢 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐺 𝑦 ) = 𝑢 ) → 𝑦 = 𝑢 ) |
19 |
18
|
equcomd |
⊢ ( ( ( 𝑢 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑢 𝐺 𝑦 ) = 𝑢 ) → 𝑢 = 𝑦 ) |
20 |
17 19
|
syl6 |
⊢ ( ( 𝑢 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) ) |
21 |
20
|
rgen2 |
⊢ ∀ 𝑢 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) |
22 |
|
oveq1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 𝐺 𝑥 ) = ( 𝑦 𝐺 𝑥 ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ↔ ( 𝑦 𝐺 𝑥 ) = 𝑥 ) ) |
24 |
23
|
ovanraleqv |
⊢ ( 𝑢 = 𝑦 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑥 ) ) ) |
25 |
24
|
reu4 |
⊢ ( ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ↔ ( ∃ 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∀ 𝑢 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑦 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑦 ) = 𝑥 ) ) → 𝑢 = 𝑦 ) ) ) |
26 |
2 21 25
|
sylanblrc |
⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ∃! 𝑢 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( ( 𝑢 𝐺 𝑥 ) = 𝑥 ∧ ( 𝑥 𝐺 𝑢 ) = 𝑥 ) ) |