Metamath Proof Explorer


Theorem eximd

Description: Deduction form of Theorem 19.22 of Margaris p. 90, see exim . (Contributed by NM, 29-Jun-1993) (Revised by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses eximd.1 𝑥 𝜑
eximd.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion eximd ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 eximd.1 𝑥 𝜑
2 eximd.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 nf5ri ( 𝜑 → ∀ 𝑥 𝜑 )
4 3 2 eximdh ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )