Metamath Proof Explorer
Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by NM, 20-May-1996)
|
|
Ref |
Expression |
|
Hypotheses |
eximdh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
|
|
eximdh.2 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
Assertion |
eximdh |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eximdh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
eximdh.2 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
3 |
2
|
aleximi |
⊢ ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) ) |