Metamath Proof Explorer


Theorem eximdh

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by NM, 20-May-1996)

Ref Expression
Hypotheses eximdh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
eximdh.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion eximdh ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )

Proof

Step Hyp Ref Expression
1 eximdh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 eximdh.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 2 aleximi ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )
4 1 3 syl ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )