Metamath Proof Explorer
Description: Inference adding existential quantifier to antecedent and consequent.
(Contributed by NM, 10-Jan-1993)
|
|
Ref |
Expression |
|
Hypothesis |
eximi.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
Assertion |
eximi |
⊢ ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eximi.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
exim |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
3 |
2 1
|
mpg |
⊢ ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) |