Metamath Proof Explorer


Theorem eximi

Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypothesis eximi.1 ( 𝜑𝜓 )
Assertion eximi ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 eximi.1 ( 𝜑𝜓 )
2 exim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
3 2 1 mpg ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 )