Metamath Proof Explorer


Theorem exinst

Description: Existential Instantiation. Virtual deduction form of exlimexi . (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses exinst.1 ( 𝜓 → ∀ 𝑥 𝜓 )
exinst.2 (   𝑥 𝜑    ,    𝜑    ▶    𝜓    )
Assertion exinst ( ∃ 𝑥 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 exinst.1 ( 𝜓 → ∀ 𝑥 𝜓 )
2 exinst.2 (   𝑥 𝜑    ,    𝜑    ▶    𝜓    )
3 2 dfvd2i ( ∃ 𝑥 𝜑 → ( 𝜑𝜓 ) )
4 1 3 exlimexi ( ∃ 𝑥 𝜑𝜓 )