Metamath Proof Explorer


Theorem exintrbi

Description: Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006)

Ref Expression
Assertion exintrbi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 abai ( ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ( 𝜑𝜓 ) ) )
2 1 rbaibr ( ( 𝜑𝜓 ) → ( 𝜑 ↔ ( 𝜑𝜓 ) ) )
3 2 alexbii ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝜑𝜓 ) ) )