Metamath Proof Explorer


Theorem exists2

Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004) (Proof shortened by Andrew Salmon, 9-Jul-2011) Reduce axiom usage. (Revised by Wolf Lammen, 4-Mar-2023)

Ref Expression
Assertion exists2 ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 ¬ 𝜑 ) → ¬ ∃! 𝑥 𝑥 = 𝑥 )

Proof

Step Hyp Ref Expression
1 axc16nf ( ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 )
2 1 nfrd ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
3 2 com12 ( ∃ 𝑥 𝜑 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 𝜑 ) )
4 exists1 ( ∃! 𝑥 𝑥 = 𝑥 ↔ ∀ 𝑥 𝑥 = 𝑦 )
5 alex ( ∀ 𝑥 𝜑 ↔ ¬ ∃ 𝑥 ¬ 𝜑 )
6 5 bicomi ( ¬ ∃ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥 𝜑 )
7 3 4 6 3imtr4g ( ∃ 𝑥 𝜑 → ( ∃! 𝑥 𝑥 = 𝑥 → ¬ ∃ 𝑥 ¬ 𝜑 ) )
8 7 con2d ( ∃ 𝑥 𝜑 → ( ∃ 𝑥 ¬ 𝜑 → ¬ ∃! 𝑥 𝑥 = 𝑥 ) )
9 8 imp ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 ¬ 𝜑 ) → ¬ ∃! 𝑥 𝑥 = 𝑥 )