Metamath Proof Explorer


Theorem exlimd

Description: Deduction form of Theorem 19.9 of Margaris p. 89. (Contributed by NM, 23-Jan-1993) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 12-Jan-2018)

Ref Expression
Hypotheses exlimd.1 𝑥 𝜑
exlimd.2 𝑥 𝜒
exlimd.3 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion exlimd ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 exlimd.1 𝑥 𝜑
2 exlimd.2 𝑥 𝜒
3 exlimd.3 ( 𝜑 → ( 𝜓𝜒 ) )
4 1 3 eximd ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )
5 2 19.9 ( ∃ 𝑥 𝜒𝜒 )
6 4 5 syl6ib ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )