Metamath Proof Explorer


Theorem exlimdd

Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017) (Proof shortened by Wolf Lammen, 3-Sep-2023)

Ref Expression
Hypotheses exlimdd.1 𝑥 𝜑
exlimdd.2 𝑥 𝜒
exlimdd.3 ( 𝜑 → ∃ 𝑥 𝜓 )
exlimdd.4 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion exlimdd ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 exlimdd.1 𝑥 𝜑
2 exlimdd.2 𝑥 𝜒
3 exlimdd.3 ( 𝜑 → ∃ 𝑥 𝜓 )
4 exlimdd.4 ( ( 𝜑𝜓 ) → 𝜒 )
5 4 ex ( 𝜑 → ( 𝜓𝜒 ) )
6 1 2 3 5 exlimimdd ( 𝜑𝜒 )