Metamath Proof Explorer
Description: Existential elimination rule of natural deduction (Rule C, explained in
exlimiv ). (Contributed by Mario Carneiro, 15-Jun-2016)
|
|
Ref |
Expression |
|
Hypotheses |
exlimddv.1 |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
|
|
exlimddv.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
Assertion |
exlimddv |
⊢ ( 𝜑 → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exlimddv.1 |
⊢ ( 𝜑 → ∃ 𝑥 𝜓 ) |
2 |
|
exlimddv.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
3 |
2
|
ex |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
4 |
3
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → 𝜒 ) ) |
5 |
1 4
|
mpd |
⊢ ( 𝜑 → 𝜒 ) |