Metamath Proof Explorer


Theorem exlimddv

Description: Existential elimination rule of natural deduction (Rule C, explained in exlimiv ). (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypotheses exlimddv.1 ( 𝜑 → ∃ 𝑥 𝜓 )
exlimddv.2 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion exlimddv ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 exlimddv.1 ( 𝜑 → ∃ 𝑥 𝜓 )
2 exlimddv.2 ( ( 𝜑𝜓 ) → 𝜒 )
3 2 ex ( 𝜑 → ( 𝜓𝜒 ) )
4 3 exlimdv ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )
5 1 4 mpd ( 𝜑𝜒 )