Metamath Proof Explorer


Theorem exlimdh

Description: Deduction form of Theorem 19.9 of Margaris p. 89. (Contributed by NM, 28-Jan-1997)

Ref Expression
Hypotheses exlimdh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
exlimdh.2 ( 𝜒 → ∀ 𝑥 𝜒 )
exlimdh.3 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion exlimdh ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 exlimdh.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 exlimdh.2 ( 𝜒 → ∀ 𝑥 𝜒 )
3 exlimdh.3 ( 𝜑 → ( 𝜓𝜒 ) )
4 1 nf5i 𝑥 𝜑
5 2 nf5i 𝑥 𝜒
6 4 5 3 exlimd ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )