Metamath Proof Explorer
Description: Deduction form of Theorem 19.9 of Margaris p. 89. (Contributed by NM, 28-Jan-1997)
|
|
Ref |
Expression |
|
Hypotheses |
exlimdh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
|
|
exlimdh.2 |
⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) |
|
|
exlimdh.3 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
Assertion |
exlimdh |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exlimdh.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
2 |
|
exlimdh.2 |
⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) |
3 |
|
exlimdh.3 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
4 |
1
|
nf5i |
⊢ Ⅎ 𝑥 𝜑 |
5 |
2
|
nf5i |
⊢ Ⅎ 𝑥 𝜒 |
6 |
4 5 3
|
exlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → 𝜒 ) ) |