Metamath Proof Explorer


Theorem exlimdvv

Description: Deduction form of Theorem 19.23 of Margaris p. 90, see 19.23 . (Contributed by NM, 31-Jul-1995)

Ref Expression
Hypothesis exlimdvv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion exlimdvv ( 𝜑 → ( ∃ 𝑥𝑦 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 exlimdvv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 exlimdv ( 𝜑 → ( ∃ 𝑦 𝜓𝜒 ) )
3 2 exlimdv ( 𝜑 → ( ∃ 𝑥𝑦 𝜓𝜒 ) )