Metamath Proof Explorer


Theorem exlimexi

Description: Inference similar to Theorem 19.23 of Margaris p. 90. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses exlimexi.1 ( 𝜓 → ∀ 𝑥 𝜓 )
exlimexi.2 ( ∃ 𝑥 𝜑 → ( 𝜑𝜓 ) )
Assertion exlimexi ( ∃ 𝑥 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 exlimexi.1 ( 𝜓 → ∀ 𝑥 𝜓 )
2 exlimexi.2 ( ∃ 𝑥 𝜑 → ( 𝜑𝜓 ) )
3 hbe1 ( ∃ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )
4 3 1 2 exlimdh ( ∃ 𝑥 𝜑 → ( ∃ 𝑥 𝜑𝜓 ) )
5 4 pm2.43i ( ∃ 𝑥 𝜑𝜓 )