Metamath Proof Explorer
Description: Inference (Rule C) associated with exlimiv . (Contributed by BJ, 19-Dec-2020)
|
|
Ref |
Expression |
|
Hypotheses |
exlimiv.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
exlimiiv.2 |
⊢ ∃ 𝑥 𝜑 |
|
Assertion |
exlimiiv |
⊢ 𝜓 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exlimiv.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
exlimiiv.2 |
⊢ ∃ 𝑥 𝜑 |
3 |
1
|
exlimiv |
⊢ ( ∃ 𝑥 𝜑 → 𝜓 ) |
4 |
2 3
|
ax-mp |
⊢ 𝜓 |