Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
exlimimdd
Metamath Proof Explorer
Description: Existential elimination rule of natural deduction. (Contributed by ML , 17-Jul-2020) Shorten exlimdd . (Revised by Wolf Lammen , 3-Sep-2023)
Ref
Expression
Hypotheses
exlimdd.1
⊢ Ⅎ 𝑥 𝜑
exlimdd.2
⊢ Ⅎ 𝑥 𝜒
exlimdd.3
⊢ ( 𝜑 → ∃ 𝑥 𝜓 )
exlimimdd.4
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) )
Assertion
exlimimdd
⊢ ( 𝜑 → 𝜒 )
Proof
Step
Hyp
Ref
Expression
1
exlimdd.1
⊢ Ⅎ 𝑥 𝜑
2
exlimdd.2
⊢ Ⅎ 𝑥 𝜒
3
exlimdd.3
⊢ ( 𝜑 → ∃ 𝑥 𝜓 )
4
exlimimdd.4
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) )
5
1 2 4
exlimd
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → 𝜒 ) )
6
3 5
mpd
⊢ ( 𝜑 → 𝜒 )