Metamath Proof Explorer


Theorem exlimimdd

Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020) Shorten exlimdd . (Revised by Wolf Lammen, 3-Sep-2023)

Ref Expression
Hypotheses exlimdd.1 𝑥 𝜑
exlimdd.2 𝑥 𝜒
exlimdd.3 ( 𝜑 → ∃ 𝑥 𝜓 )
exlimimdd.4 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion exlimimdd ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 exlimdd.1 𝑥 𝜑
2 exlimdd.2 𝑥 𝜒
3 exlimdd.3 ( 𝜑 → ∃ 𝑥 𝜓 )
4 exlimimdd.4 ( 𝜑 → ( 𝜓𝜒 ) )
5 1 2 4 exlimd ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )
6 3 5 mpd ( 𝜑𝜒 )