Description: An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exmid2.1 | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) | |
| exmid2.2 | ⊢ ( ( ¬ 𝜓 ∧ 𝜂 ) → 𝜒 ) | ||
| Assertion | exmid2 | ⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜒 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmid2.1 | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) | |
| 2 | exmid2.2 | ⊢ ( ( ¬ 𝜓 ∧ 𝜂 ) → 𝜒 ) | |
| 3 | simpl | ⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜑 ) | |
| 4 | 3 | anim2i | ⊢ ( ( 𝜓 ∧ ( 𝜑 ∧ 𝜂 ) ) → ( 𝜓 ∧ 𝜑 ) ) | 
| 5 | 4 | ancoms | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) → ( 𝜓 ∧ 𝜑 ) ) | 
| 6 | 5 1 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) → 𝜒 ) | 
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜂 ) | |
| 8 | 7 | anim2i | ⊢ ( ( ¬ 𝜓 ∧ ( 𝜑 ∧ 𝜂 ) ) → ( ¬ 𝜓 ∧ 𝜂 ) ) | 
| 9 | 8 | ancoms | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ ¬ 𝜓 ) → ( ¬ 𝜓 ∧ 𝜂 ) ) | 
| 10 | 9 2 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ ¬ 𝜓 ) → 𝜒 ) | 
| 11 | 6 10 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜒 ) |