Metamath Proof Explorer


Theorem exmoeu

Description: Existence is equivalent to uniqueness implying existential uniqueness. (Contributed by NM, 5-Apr-2004) (Proof shortened by Wolf Lammen, 5-Dec-2018) (Proof shortened by BJ, 7-Oct-2022)

Ref Expression
Assertion exmoeu ( ∃ 𝑥 𝜑 ↔ ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 exmoeub ( ∃ 𝑥 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) )
2 1 biimpd ( ∃ 𝑥 𝜑 → ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
3 nexmo ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 )
4 3 con1i ( ¬ ∃* 𝑥 𝜑 → ∃ 𝑥 𝜑 )
5 euex ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 )
6 4 5 ja ( ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) → ∃ 𝑥 𝜑 )
7 2 6 impbii ( ∃ 𝑥 𝜑 ↔ ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )