Metamath Proof Explorer


Theorem exnalimn

Description: Existential quantification of a conjunction expressed with only primitive symbols ( -> , -. , A. ). (Contributed by NM, 10-May-1993) State the most general instance. (Revised by BJ, 29-Sep-2019)

Ref Expression
Assertion exnalimn ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 alinexa ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ∃ 𝑥 ( 𝜑𝜓 ) )
2 1 con2bii ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ¬ ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) )