Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exopxfr.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | exopxfr | ⊢ ( ∃ 𝑥 ∈ ( V × V ) 𝜑 ↔ ∃ 𝑦 ∃ 𝑧 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exopxfr.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | rexxp | ⊢ ( ∃ 𝑥 ∈ ( V × V ) 𝜑 ↔ ∃ 𝑦 ∈ V ∃ 𝑧 ∈ V 𝜓 ) |
| 3 | rexv | ⊢ ( ∃ 𝑦 ∈ V ∃ 𝑧 ∈ V 𝜓 ↔ ∃ 𝑦 ∃ 𝑧 ∈ V 𝜓 ) | |
| 4 | rexv | ⊢ ( ∃ 𝑧 ∈ V 𝜓 ↔ ∃ 𝑧 𝜓 ) | |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ∈ V 𝜓 ↔ ∃ 𝑦 ∃ 𝑧 𝜓 ) |
| 6 | 2 3 5 | 3bitri | ⊢ ( ∃ 𝑥 ∈ ( V × V ) 𝜑 ↔ ∃ 𝑦 ∃ 𝑧 𝜓 ) |