Metamath Proof Explorer


Theorem exopxfr

Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis exopxfr.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
Assertion exopxfr ( ∃ 𝑥 ∈ ( V × V ) 𝜑 ↔ ∃ 𝑦𝑧 𝜓 )

Proof

Step Hyp Ref Expression
1 exopxfr.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( 𝜑𝜓 ) )
2 1 rexxp ( ∃ 𝑥 ∈ ( V × V ) 𝜑 ↔ ∃ 𝑦 ∈ V ∃ 𝑧 ∈ V 𝜓 )
3 rexv ( ∃ 𝑦 ∈ V ∃ 𝑧 ∈ V 𝜓 ↔ ∃ 𝑦𝑧 ∈ V 𝜓 )
4 rexv ( ∃ 𝑧 ∈ V 𝜓 ↔ ∃ 𝑧 𝜓 )
5 4 exbii ( ∃ 𝑦𝑧 ∈ V 𝜓 ↔ ∃ 𝑦𝑧 𝜓 )
6 2 3 5 3bitri ( ∃ 𝑥 ∈ ( V × V ) 𝜑 ↔ ∃ 𝑦𝑧 𝜓 )