| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 2 | 
							
								
							 | 
							expval | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  0  ∈  ℤ )  →  ( 𝐴 ↑ 0 )  =  if ( 0  =  0 ,  1 ,  if ( 0  <  0 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 0 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 0 ) ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan2 | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 0 )  =  if ( 0  =  0 ,  1 ,  if ( 0  <  0 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 0 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 0 ) ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ 0  =  0  | 
						
						
							| 5 | 
							
								4
							 | 
							iftruei | 
							⊢ if ( 0  =  0 ,  1 ,  if ( 0  <  0 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 0 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 0 ) ) ) )  =  1  | 
						
						
							| 6 | 
							
								3 5
							 | 
							eqtrdi | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 0 )  =  1 )  |