Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
expval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℤ ) → ( 𝐴 ↑ 0 ) = if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 0 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 0 ) ) ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 0 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 0 ) ) ) ) ) |
4 |
|
eqid |
⊢ 0 = 0 |
5 |
4
|
iftruei |
⊢ if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 0 ) , ( 1 / ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ - 0 ) ) ) ) = 1 |
6 |
3 5
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |