| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
⊢ 1 ∈ ℕ |
| 2 |
|
expnnval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℕ ) → ( 𝐴 ↑ 1 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 1 ) ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 1 ) ) |
| 4 |
|
1z |
⊢ 1 ∈ ℤ |
| 5 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( ( ℕ × { 𝐴 } ) ‘ 1 ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( seq 1 ( · , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( ( ℕ × { 𝐴 } ) ‘ 1 ) |
| 7 |
3 6
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = ( ( ℕ × { 𝐴 } ) ‘ 1 ) ) |
| 8 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = 𝐴 ) |
| 9 |
1 8
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = 𝐴 ) |
| 10 |
7 9
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |