Description: An exportation inference. (Contributed by NM, 26-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Hypothesis | exp41.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
Assertion | exp41 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp41.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
2 | 1 | ex | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → ( 𝜃 → 𝜏 ) ) |
3 | 2 | exp31 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) ) |