Metamath Proof Explorer


Theorem exp41

Description: An exportation inference. (Contributed by NM, 26-Apr-1994)

Ref Expression
Hypothesis exp41.1 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )
Assertion exp41 ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )

Proof

Step Hyp Ref Expression
1 exp41.1 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )
2 1 ex ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → ( 𝜃𝜏 ) )
3 2 exp31 ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) ) )