Description: A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exp520.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) | |
| Assertion | exp520 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp520.1 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) | |
| 2 | 1 | ex | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) ) |
| 3 | 2 | exp5o | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) |