Metamath Proof Explorer


Theorem exp53

Description: An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009)

Ref Expression
Hypothesis exp53.1 ( ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ∧ 𝜏 ) → 𝜂 )
Assertion exp53 ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp53.1 ( ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) ∧ 𝜏 ) → 𝜂 )
2 1 ex ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( 𝜏𝜂 ) )
3 2 exp43 ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) ) ) )