Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exp5j.1 | ⊢ ( 𝜑 → ( ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 ) ) | |
| Assertion | exp5j | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exp5j.1 | ⊢ ( 𝜑 → ( ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜂 ) ) | |
| 2 | 1 | expd | ⊢ ( 𝜑 → ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → ( 𝜏 → 𝜂 ) ) ) | 
| 3 | 2 | exp4c | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) ) ) |