Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝑀 + 𝑗 ) = ( 𝑀 + 0 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑗 = 0 → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 + 0 ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 0 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ↔ ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑀 + 𝑗 ) = ( 𝑀 + 𝑘 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑘 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
11 |
8 10
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ↔ ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 + 𝑗 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ↔ ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝑀 + 𝑗 ) = ( 𝑀 + 𝑁 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑁 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
23 |
20 22
|
eqeq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ↔ ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ) |
25 |
|
nn0cn |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) |
26 |
25
|
addid1d |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 0 ) = 𝑀 ) |
27 |
26
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 + 0 ) = 𝑀 ) |
28 |
27
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( 𝐴 ↑ 𝑀 ) ) |
29 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
30 |
29
|
mulid1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · 1 ) = ( 𝐴 ↑ 𝑀 ) ) |
31 |
28 30
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · 1 ) ) |
32 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
33 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 0 ) = 1 ) |
34 |
33
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · 1 ) ) |
35 |
31 34
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) ) |
36 |
|
oveq1 |
⊢ ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) ) |
37 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
38 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
39 |
|
addass |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
40 |
38 39
|
mp3an3 |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
41 |
25 37 40
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
42 |
41
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
43 |
42
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) |
44 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
45 |
|
nn0addcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 + 𝑘 ) ∈ ℕ0 ) |
46 |
45
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 + 𝑘 ) ∈ ℕ0 ) |
47 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 + 𝑘 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) ) |
48 |
44 46 47
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) ) |
49 |
43 48
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) ) |
50 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
51 |
50
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
52 |
51
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
53 |
29
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
54 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
55 |
54
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
56 |
53 55 44
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) = ( ( 𝐴 ↑ 𝑀 ) · ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
57 |
52 56
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) ) |
58 |
49 57
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) ) ) |
59 |
36 58
|
syl5ibr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) |
60 |
59
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
61 |
60
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
62 |
6 12 18 24 35 61
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
63 |
62
|
expdcom |
⊢ ( 𝐴 ∈ ℂ → ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ) |
64 |
63
|
3imp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |