Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
expaddd
Metamath Proof Explorer
Description: Sum of exponents law for nonnegative integer exponentiation.
Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario
Carneiro , 28-May-2016)
Ref
Expression
Hypotheses
expcld.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
expcld.2
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 )
expaddd.2
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 )
Assertion
expaddd
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) )
Proof
Step
Hyp
Ref
Expression
1
expcld.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
2
expcld.2
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 )
3
expaddd.2
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 )
4
expadd
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) )
5
1 3 2 4
syl3anc
⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) )