| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 2 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 3 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 5 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℕ ) |
| 6 |
5
|
nnnn0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℕ0 ) |
| 7 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
| 8 |
1 6 7
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
| 9 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
| 10 |
5
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℤ ) |
| 11 |
|
expne0i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ - 𝑀 ∈ ℤ ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
| 12 |
1 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
| 13 |
4 8 12
|
divrec2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 14 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 16 |
15
|
negnegd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - - 𝑀 = 𝑀 ) |
| 17 |
|
nnnegz |
⊢ ( - 𝑀 ∈ ℕ → - - 𝑀 ∈ ℤ ) |
| 18 |
5 17
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - - 𝑀 ∈ ℤ ) |
| 19 |
16 18
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℤ ) |
| 20 |
2
|
nn0zd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 21 |
19 20
|
zaddcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 22 |
|
expclz |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 23 |
1 9 21 22
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 25 |
8
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
| 26 |
12
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
| 27 |
24 25 26
|
divcan4d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) / ( 𝐴 ↑ - 𝑀 ) ) = ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ) |
| 28 |
1
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 29 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) |
| 30 |
6
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - 𝑀 ∈ ℕ0 ) |
| 31 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑁 ) + - 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) ) |
| 32 |
28 29 30 31
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑁 ) + - 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) ) |
| 33 |
21
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℂ ) |
| 34 |
33 15
|
negsubd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) + - 𝑀 ) = ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) |
| 35 |
2
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 36 |
15 35
|
pncan2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) − 𝑀 ) = 𝑁 ) |
| 37 |
34 36
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) + - 𝑀 ) = 𝑁 ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) + - 𝑀 ) = 𝑁 ) |
| 39 |
38
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑁 ) + - 𝑀 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 40 |
32 39
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 41 |
40
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) / ( 𝐴 ↑ - 𝑀 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 42 |
27 41
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 43 |
1
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 44 |
33
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℂ ) |
| 45 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) |
| 46 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ∈ ℂ ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) ) |
| 47 |
43 44 45 46
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) ) |
| 48 |
21
|
znegcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 49 |
|
expclz |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ - ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 50 |
1 9 48 49
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 52 |
4
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 53 |
|
expne0i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 54 |
1 9 20 53
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 55 |
54
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 56 |
51 52 55
|
divcan4d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) / ( 𝐴 ↑ 𝑁 ) ) = ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) |
| 57 |
2
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 58 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( - ( 𝑀 + 𝑁 ) + 𝑁 ) ) = ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 59 |
43 45 57 58
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( - ( 𝑀 + 𝑁 ) + 𝑁 ) ) = ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 60 |
15 35
|
negdi2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) = ( - 𝑀 − 𝑁 ) ) |
| 61 |
60
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( - ( 𝑀 + 𝑁 ) + 𝑁 ) = ( ( - 𝑀 − 𝑁 ) + 𝑁 ) ) |
| 62 |
15
|
negcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℂ ) |
| 63 |
62 35
|
npcand |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( - 𝑀 − 𝑁 ) + 𝑁 ) = - 𝑀 ) |
| 64 |
61 63
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( - ( 𝑀 + 𝑁 ) + 𝑁 ) = - 𝑀 ) |
| 65 |
64
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( - ( 𝑀 + 𝑁 ) + 𝑁 ) = - 𝑀 ) |
| 66 |
65
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( - ( 𝑀 + 𝑁 ) + 𝑁 ) ) = ( 𝐴 ↑ - 𝑀 ) ) |
| 67 |
59 66
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) = ( 𝐴 ↑ - 𝑀 ) ) |
| 68 |
67
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) / ( 𝐴 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
| 69 |
56 68
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
| 70 |
69
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 71 |
8 4 12 54
|
recdivd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 1 / ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 72 |
71
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 1 / ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 73 |
70 72
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 74 |
47 73
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 75 |
|
elznn0 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ℤ ↔ ( ( 𝑀 + 𝑁 ) ∈ ℝ ∧ ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) ) |
| 76 |
75
|
simprbi |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ℤ → ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) |
| 77 |
21 76
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) |
| 78 |
42 74 77
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 79 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 80 |
1 15 6 79
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 81 |
80
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 82 |
13 78 81
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |