Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
ltexp2d.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
ltexp2d.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
ltexp2d.4 | ⊢ ( 𝜑 → 1 < 𝐴 ) | ||
expcand.5 | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) = ( 𝐴 ↑ 𝑁 ) ) | ||
Assertion | expcand | ⊢ ( 𝜑 → 𝑀 = 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | ltexp2d.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | ltexp2d.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
4 | ltexp2d.4 | ⊢ ( 𝜑 → 1 < 𝐴 ) | |
5 | expcand.5 | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) = ( 𝐴 ↑ 𝑁 ) ) | |
6 | expcan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( ( 𝐴 ↑ 𝑀 ) = ( 𝐴 ↑ 𝑁 ) ↔ 𝑀 = 𝑁 ) ) | |
7 | 1 2 3 4 6 | syl31anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑀 ) = ( 𝐴 ↑ 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |
8 | 5 7 | mpbid | ⊢ ( 𝜑 → 𝑀 = 𝑁 ) |