Metamath Proof Explorer


Theorem expcand

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 ( 𝜑𝐴 ∈ ℝ )
ltexp2d.2 ( 𝜑𝑀 ∈ ℤ )
ltexp2d.3 ( 𝜑𝑁 ∈ ℤ )
ltexp2d.4 ( 𝜑 → 1 < 𝐴 )
expcand.5 ( 𝜑 → ( 𝐴𝑀 ) = ( 𝐴𝑁 ) )
Assertion expcand ( 𝜑𝑀 = 𝑁 )

Proof

Step Hyp Ref Expression
1 resqcld.1 ( 𝜑𝐴 ∈ ℝ )
2 ltexp2d.2 ( 𝜑𝑀 ∈ ℤ )
3 ltexp2d.3 ( 𝜑𝑁 ∈ ℤ )
4 ltexp2d.4 ( 𝜑 → 1 < 𝐴 )
5 expcand.5 ( 𝜑 → ( 𝐴𝑀 ) = ( 𝐴𝑁 ) )
6 expcan ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 1 < 𝐴 ) → ( ( 𝐴𝑀 ) = ( 𝐴𝑁 ) ↔ 𝑀 = 𝑁 ) )
7 1 2 3 4 6 syl31anc ( 𝜑 → ( ( 𝐴𝑀 ) = ( 𝐴𝑁 ) ↔ 𝑀 = 𝑁 ) )
8 5 7 mpbid ( 𝜑𝑀 = 𝑁 )