Metamath Proof Explorer


Theorem expcl

Description: Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005)

Ref Expression
Assertion expcl ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 ssid ℂ ⊆ ℂ
2 mulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
3 ax-1cn 1 ∈ ℂ
4 1 2 3 expcllem ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) ∈ ℂ )