Metamath Proof Explorer


Theorem expcld

Description: Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
Assertion expcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 expcl ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) ∈ ℂ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝑁 ) ∈ ℂ )