Step |
Hyp |
Ref |
Expression |
1 |
|
expcllem.1 |
⊢ 𝐹 ⊆ ℂ |
2 |
|
expcllem.2 |
⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) |
3 |
|
expcllem.3 |
⊢ 1 ∈ 𝐹 |
4 |
|
elnn0 |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑧 = 1 → ( 𝐴 ↑ 𝑧 ) = ( 𝐴 ↑ 1 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑧 = 1 → ( ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ↔ ( 𝐴 ↑ 1 ) ∈ 𝐹 ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑧 = 1 → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 1 ) ∈ 𝐹 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝐴 ↑ 𝑧 ) = ( 𝐴 ↑ 𝑤 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ↔ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑤 + 1 ) → ( 𝐴 ↑ 𝑧 ) = ( 𝐴 ↑ ( 𝑤 + 1 ) ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑧 = ( 𝑤 + 1 ) → ( ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ↔ ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑧 = ( 𝑤 + 1 ) → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 ↑ 𝑧 ) = ( 𝐴 ↑ 𝐵 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ↔ ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑧 ) ∈ 𝐹 ) ↔ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) ) |
17 |
1
|
sseli |
⊢ ( 𝐴 ∈ 𝐹 → 𝐴 ∈ ℂ ) |
18 |
|
exp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 1 ) = 𝐴 ) |
20 |
19
|
eleq1d |
⊢ ( 𝐴 ∈ 𝐹 → ( ( 𝐴 ↑ 1 ) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹 ) ) |
21 |
20
|
ibir |
⊢ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 1 ) ∈ 𝐹 ) |
22 |
2
|
caovcl |
⊢ ( ( ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹 ) → ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) |
23 |
22
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) |
25 |
|
nnnn0 |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℕ0 ) |
26 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑤 + 1 ) ) = ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ) |
27 |
17 25 26
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) → ( 𝐴 ↑ ( 𝑤 + 1 ) ) = ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ) |
28 |
27
|
eleq1d |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) → ( ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ↔ ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ↔ ( ( 𝐴 ↑ 𝑤 ) · 𝐴 ) ∈ 𝐹 ) ) |
30 |
24 29
|
mpbird |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) |
31 |
30
|
exp31 |
⊢ ( 𝐴 ∈ 𝐹 → ( 𝑤 ∈ ℕ → ( ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) ) |
32 |
31
|
com12 |
⊢ ( 𝑤 ∈ ℕ → ( 𝐴 ∈ 𝐹 → ( ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) ) |
33 |
32
|
a2d |
⊢ ( 𝑤 ∈ ℕ → ( ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝑤 ) ∈ 𝐹 ) → ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ ( 𝑤 + 1 ) ) ∈ 𝐹 ) ) ) |
34 |
7 10 13 16 21 33
|
nnind |
⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
35 |
34
|
impcom |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
36 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 ↑ 𝐵 ) = ( 𝐴 ↑ 0 ) ) |
37 |
|
exp0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) |
38 |
17 37
|
syl |
⊢ ( 𝐴 ∈ 𝐹 → ( 𝐴 ↑ 0 ) = 1 ) |
39 |
36 38
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 = 0 ) → ( 𝐴 ↑ 𝐵 ) = 1 ) |
40 |
39 3
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 = 0 ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
41 |
35 40
|
jaodan |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
42 |
4 41
|
sylan2b |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |