Metamath Proof Explorer


Theorem expclz

Description: Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expclz ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 expclzlem ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ( ℂ ∖ { 0 } ) )
2 1 eldifad ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℂ )