Step |
Hyp |
Ref |
Expression |
1 |
|
expcn.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 0 ) ) |
3 |
2
|
mpteq2dv |
⊢ ( 𝑛 = 0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑛 = 0 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑘 ) ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) |
9 |
8
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑁 ) ) |
12 |
11
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
14 |
|
exp0 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 0 ) = 1 ) |
15 |
14
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
16 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
17 |
16
|
a1i |
⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
18 |
|
1cnd |
⊢ ( ⊤ → 1 ∈ ℂ ) |
19 |
17 17 18
|
cnmptc |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
20 |
19
|
mptru |
⊢ ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( 𝐽 Cn 𝐽 ) |
21 |
15 20
|
eqeltri |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ∈ ( 𝐽 Cn 𝐽 ) |
22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) |
23 |
22
|
cbvmptv |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) |
24 |
|
id |
⊢ ( 𝑛 ∈ ℂ → 𝑛 ∈ ℂ ) |
25 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑘 ∈ ℕ0 ) |
26 |
|
expp1 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑛 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) |
27 |
24 25 26
|
syl2anr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ∧ 𝑛 ∈ ℂ ) → ( 𝑛 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) |
28 |
27
|
mpteq2dva |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) ) |
29 |
23 28
|
syl5eq |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) ) |
30 |
16
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
31 |
|
oveq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ↑ 𝑘 ) = ( 𝑛 ↑ 𝑘 ) ) |
32 |
31
|
cbvmptv |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) = ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ 𝑘 ) ) |
33 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
34 |
32 33
|
eqeltrrid |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
35 |
30
|
cnmptid |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ 𝑛 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
36 |
1
|
mulcn |
⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
37 |
36
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
38 |
30 34 35 37
|
cnmpt12f |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
39 |
29 38
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
40 |
39
|
ex |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
41 |
4 7 10 13 21 40
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |