| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expcnfg.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | expcnfg.2 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 3 |  | expcnfg.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑡 ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑥 𝑡 | 
						
							| 6 | 1 5 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑡 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥 ↑ | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝑁 | 
						
							| 9 | 6 7 8 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑥  =  𝑡  →  ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 12 | 4 9 11 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) )  =  ( 𝑡  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 13 |  | cncff | ⊢ ( 𝐹  ∈  ( 𝐴 –cn→ ℂ )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 14 | 2 13 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 15 | 14 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐴 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 17 | 15 16 | expcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑡 )  →  ( 𝑥 ↑ 𝑁 )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) | 
						
							| 20 | 6 9 18 19 | fvmptf | ⊢ ( ( ( 𝐹 ‘ 𝑡 )  ∈  ℂ  ∧  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 )  ∈  ℂ )  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 21 | 15 17 20 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐴 )  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) )  =  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 )  =  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 23 | 22 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) )  =  ( 𝑡  ∈  𝐴  ↦  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 24 | 12 23 | eqtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) )  =  ( 𝑡  ∈  𝐴  ↦  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝑥  ∈  ℂ ) | 
						
							| 26 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 27 | 25 26 | expcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℂ )  →  ( 𝑥 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 28 | 27 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) : ℂ ⟶ ℂ ) | 
						
							| 29 |  | fcompt | ⊢ ( ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) : ℂ ⟶ ℂ  ∧  𝐹 : 𝐴 ⟶ ℂ )  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 )  =  ( 𝑡  ∈  𝐴  ↦  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 30 | 28 14 29 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 )  =  ( 𝑡  ∈  𝐴  ↦  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 31 | 24 30 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) )  =  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 ) ) | 
						
							| 32 |  | expcncf | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 33 | 3 32 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 34 | 2 33 | cncfco | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℂ  ↦  ( 𝑥 ↑ 𝑁 ) )  ∘  𝐹 )  ∈  ( 𝐴 –cn→ ℂ ) ) | 
						
							| 35 | 31 34 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) )  ∈  ( 𝐴 –cn→ ℂ ) ) |