Step |
Hyp |
Ref |
Expression |
1 |
|
expcnfg.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
expcnfg.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
3 |
|
expcnfg.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑡 |
6 |
1 5
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑡 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 ↑ |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑁 |
9 |
6 7 8
|
nfov |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑡 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
12 |
4 9 11
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
13 |
|
cncff |
⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
15 |
14
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → 𝑁 ∈ ℕ0 ) |
17 |
15 16
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℂ ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑡 ) → ( 𝑥 ↑ 𝑁 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
19 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) |
20 |
6 9 18 19
|
fvmptf |
⊢ ( ( ( 𝐹 ‘ 𝑡 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
21 |
15 17 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) |
23 |
22
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
24 |
12 23
|
syl5eq |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
27 |
25 26
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑁 ) ∈ ℂ ) |
28 |
27
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) : ℂ ⟶ ℂ ) |
29 |
|
fcompt |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) : ℂ ⟶ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
30 |
28 14 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) = ( 𝑡 ∈ 𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ‘ ( 𝐹 ‘ 𝑡 ) ) ) ) |
31 |
24 30
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ) |
32 |
|
expcncf |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
33 |
3 32
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
34 |
2 33
|
cncfco |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∘ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
35 |
31 34
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |