| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expcnv.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | expcnv.2 | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  <  1 ) | 
						
							| 3 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 4 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  1  ∈  ℤ ) | 
						
							| 5 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 6 | 5 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ∈  V ) | 
						
							| 8 |  | 0cnd | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  0  ∈  ℂ ) | 
						
							| 9 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) | 
						
							| 12 |  | ovex | ⊢ ( 𝐴 ↑ 𝑘 )  ∈  V | 
						
							| 13 | 10 11 12 | fvmpt | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 14 | 9 13 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  ( 𝐴 ↑ 𝑘 )  =  ( 0 ↑ 𝑘 ) ) | 
						
							| 17 | 14 16 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 0 ↑ 𝑘 ) ) | 
						
							| 18 |  | 0exp | ⊢ ( 𝑘  ∈  ℕ  →  ( 0 ↑ 𝑘 )  =  0 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ )  →  ( 0 ↑ 𝑘 )  =  0 ) | 
						
							| 20 | 17 19 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  0 ) | 
						
							| 21 | 3 4 7 8 20 | climconst | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ⇝  0 ) | 
						
							| 22 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  1  ∈  ℤ ) | 
						
							| 23 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  <  1 ) | 
						
							| 24 |  | absrpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 25 | 1 24 | sylan | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 26 | 25 | reclt1d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  <  1  ↔  1  <  ( 1  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 27 | 23 26 | mpbid | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  1  <  ( 1  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 28 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 29 | 25 | rpreccld | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 1  /  ( abs ‘ 𝐴 ) )  ∈  ℝ+ ) | 
						
							| 30 | 29 | rpred | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 1  /  ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 31 |  | difrp | ⊢ ( ( 1  ∈  ℝ  ∧  ( 1  /  ( abs ‘ 𝐴 ) )  ∈  ℝ )  →  ( 1  <  ( 1  /  ( abs ‘ 𝐴 ) )  ↔  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ∈  ℝ+ ) ) | 
						
							| 32 | 28 30 31 | sylancr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 1  <  ( 1  /  ( abs ‘ 𝐴 ) )  ↔  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ∈  ℝ+ ) ) | 
						
							| 33 | 27 32 | mpbid | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ∈  ℝ+ ) | 
						
							| 34 | 33 | rpreccld | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  ∈  ℝ+ ) | 
						
							| 35 | 34 | rpcnd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  ∈  ℂ ) | 
						
							| 36 |  | divcnv | ⊢ ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  ∈  ℂ  →  ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 ) )  ⇝  0 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 ) )  ⇝  0 ) | 
						
							| 38 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 39 | 38 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )  ∈  V ) | 
						
							| 41 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 )  =  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 ) ) | 
						
							| 42 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 ) ) | 
						
							| 43 |  | ovex | ⊢ ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 )  ∈  V | 
						
							| 44 | 41 42 43 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 ) ) ‘ 𝑘 )  =  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 ) ) ‘ 𝑘 )  =  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 ) ) | 
						
							| 46 | 34 | rpred | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  ∈  ℝ ) | 
						
							| 47 |  | nndivre | ⊢ ( ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  ∈  ℝ  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 )  ∈  ℝ ) | 
						
							| 48 | 46 47 | sylan | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 )  ∈  ℝ ) | 
						
							| 49 | 45 48 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 50 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ( abs ‘ 𝐴 ) ↑ 𝑛 )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | 
						
							| 51 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) | 
						
							| 52 |  | ovex | ⊢ ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  ∈  V | 
						
							| 53 | 50 51 52 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | 
						
							| 55 |  | nnz | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℤ ) | 
						
							| 56 |  | rpexpcl | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 57 | 25 55 56 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 58 | 54 57 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  ∈  ℝ+ ) | 
						
							| 59 | 58 | rpred | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 60 |  | nnrp | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ+ ) | 
						
							| 61 |  | rpmulcl | ⊢ ( ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ∈  ℝ+  ∧  𝑘  ∈  ℝ+ )  →  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  ∈  ℝ+ ) | 
						
							| 62 | 33 60 61 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  ∈  ℝ+ ) | 
						
							| 63 | 62 | rpred | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  ∈  ℝ ) | 
						
							| 64 |  | peano2re | ⊢ ( ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  ∈  ℝ  →  ( ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 66 |  | rpexpcl | ⊢ ( ( ( 1  /  ( abs ‘ 𝐴 ) )  ∈  ℝ+  ∧  𝑘  ∈  ℤ )  →  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 67 | 29 55 66 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  ∈  ℝ+ ) | 
						
							| 68 | 67 | rpred | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 69 | 63 | lep1d | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  ≤  ( ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  +  1 ) ) | 
						
							| 70 | 30 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( 1  /  ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 71 | 9 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 72 | 29 | rpge0d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  0  ≤  ( 1  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( 1  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 74 |  | bernneq2 | ⊢ ( ( ( 1  /  ( abs ‘ 𝐴 ) )  ∈  ℝ  ∧  𝑘  ∈  ℕ0  ∧  0  ≤  ( 1  /  ( abs ‘ 𝐴 ) ) )  →  ( ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  +  1 )  ≤  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) | 
						
							| 75 | 70 71 73 74 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  +  1 )  ≤  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) | 
						
							| 76 | 63 65 68 69 75 | letrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  ≤  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) | 
						
							| 77 | 25 | rpcnne0d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ≠  0 ) ) | 
						
							| 78 |  | exprec | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ≠  0  ∧  𝑘  ∈  ℤ )  →  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  =  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) | 
						
							| 79 | 78 | 3expa | ⊢ ( ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  ≠  0 )  ∧  𝑘  ∈  ℤ )  →  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  =  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) | 
						
							| 80 | 77 55 79 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  =  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) | 
						
							| 81 | 76 80 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 )  ≤  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) | 
						
							| 82 | 62 57 81 | lerec2d | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  ≤  ( 1  /  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 ) ) ) | 
						
							| 83 | 33 | rpcnne0d | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ∈  ℂ  ∧  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ≠  0 ) ) | 
						
							| 84 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 85 |  | nnne0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≠  0 ) | 
						
							| 86 | 84 85 | jca | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  ∈  ℂ  ∧  𝑘  ≠  0 ) ) | 
						
							| 87 |  | recdiv2 | ⊢ ( ( ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ∈  ℂ  ∧  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ≠  0 )  ∧  ( 𝑘  ∈  ℂ  ∧  𝑘  ≠  0 ) )  →  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 )  =  ( 1  /  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 ) ) ) | 
						
							| 88 | 83 86 87 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 )  =  ( 1  /  ( ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 )  ·  𝑘 ) ) ) | 
						
							| 89 | 82 88 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  ≤  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑘 ) ) | 
						
							| 90 | 89 54 45 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ( 1  /  ( ( 1  /  ( abs ‘ 𝐴 ) )  −  1 ) )  /  𝑛 ) ) ‘ 𝑘 ) ) | 
						
							| 91 | 58 | rpge0d | ⊢ ( ( ( 𝜑  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) ) | 
						
							| 92 | 3 22 37 40 49 59 90 91 | climsqz2 | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )  ⇝  0 ) | 
						
							| 93 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 94 | 6 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ∈  V ) | 
						
							| 95 | 39 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )  ∈  V ) | 
						
							| 96 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 97 | 96 13 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 98 |  | expcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 99 | 1 9 98 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 100 | 97 99 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 101 |  | absexp | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( 𝐴 ↑ 𝑘 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | 
						
							| 102 | 1 9 101 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( 𝐴 ↑ 𝑘 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | 
						
							| 103 | 97 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) )  =  ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 104 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | 
						
							| 105 | 102 103 104 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( abs ‘ ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) ) ) | 
						
							| 106 | 3 93 94 95 100 105 | climabs0 | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ⇝  0  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )  ⇝  0 ) ) | 
						
							| 107 | 106 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) )  ⇝  0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ⇝  0 ) | 
						
							| 108 | 92 107 | syldan | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ⇝  0 ) | 
						
							| 109 | 21 108 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  ⇝  0 ) |