Metamath Proof Explorer


Theorem expcomd

Description: Deduction form of expcom . (Contributed by Alan Sare, 22-Jul-2012)

Ref Expression
Hypothesis expcomd.1 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
Assertion expcomd ( 𝜑 → ( 𝜒 → ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 expcomd.1 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
2 1 expd ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
3 2 com23 ( 𝜑 → ( 𝜒 → ( 𝜓𝜃 ) ) )