Metamath Proof Explorer
Description: Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
mulexpd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
sqdivd.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
|
|
expdivd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
|
Assertion |
expdivd |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
mulexpd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
sqdivd.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
4 |
|
expdivd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
expdiv |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) |
6 |
1 2 3 4 5
|
syl121anc |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐵 ↑ 𝑁 ) ) ) |