Metamath Proof Explorer


Theorem expdivd

Description: Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
mulexpd.2 ( 𝜑𝐵 ∈ ℂ )
sqdivd.3 ( 𝜑𝐵 ≠ 0 )
expdivd.3 ( 𝜑𝑁 ∈ ℕ0 )
Assertion expdivd ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴𝑁 ) / ( 𝐵𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 mulexpd.2 ( 𝜑𝐵 ∈ ℂ )
3 sqdivd.3 ( 𝜑𝐵 ≠ 0 )
4 expdivd.3 ( 𝜑𝑁 ∈ ℕ0 )
5 expdiv ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴𝑁 ) / ( 𝐵𝑁 ) ) )
6 1 2 3 4 5 syl121anc ( 𝜑 → ( ( 𝐴 / 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴𝑁 ) / ( 𝐵𝑁 ) ) )