Metamath Proof Explorer
Description: Positive integer exponentiation is 0 iff its base is 0. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
expeq0d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
|
|
expeq0d.3 |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) = 0 ) |
|
Assertion |
expeq0d |
⊢ ( 𝜑 → 𝐴 = 0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
expcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
expeq0d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
expeq0d.3 |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) = 0 ) |
4 |
|
expeq0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) = 0 ↔ 𝐴 = 0 ) ) |
5 |
1 2 4
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) = 0 ↔ 𝐴 = 0 ) ) |
6 |
3 5
|
mpbid |
⊢ ( 𝜑 → 𝐴 = 0 ) |