| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expfac.f | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 2 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 3 |  | 0zd | ⊢ ( 𝐴  ∈  ℂ  →  0  ∈  ℤ ) | 
						
							| 4 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 5 | 4 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  ∈  V | 
						
							| 6 | 1 5 | eqeltri | ⊢ 𝐹  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  𝐹  ∈  V ) | 
						
							| 8 | 1 | efcllem | ⊢ ( 𝐴  ∈  ℂ  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ 𝑚 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ! ‘ 𝑛 )  =  ( ! ‘ 𝑚 ) ) | 
						
							| 11 | 9 10 | oveq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐴 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) )  =  ( ( 𝐴 ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 13 |  | eftcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 14 | 1 11 12 13 | fvmptd3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑚 )  =  ( ( 𝐴 ↑ 𝑚 )  /  ( ! ‘ 𝑚 ) ) ) | 
						
							| 15 | 14 13 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 16 | 2 3 7 8 15 | serf0 | ⊢ ( 𝐴  ∈  ℂ  →  𝐹  ⇝  0 ) |