Step |
Hyp |
Ref |
Expression |
1 |
|
expfac.f |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
2 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
3 |
|
0zd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℤ ) |
4 |
|
nn0ex |
⊢ ℕ0 ∈ V |
5 |
4
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ∈ V |
6 |
1 5
|
eqeltri |
⊢ 𝐹 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ V ) |
8 |
1
|
efcllem |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
9 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑚 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑚 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( ( 𝐴 ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) |
12 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
13 |
|
eftcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ∈ ℂ ) |
14 |
1 11 12 13
|
fvmptd3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝐴 ↑ 𝑚 ) / ( ! ‘ 𝑚 ) ) ) |
15 |
14 13
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
16 |
2 3 7 8 15
|
serf0 |
⊢ ( 𝐴 ∈ ℂ → 𝐹 ⇝ 0 ) |