Metamath Proof Explorer


Theorem expfac

Description: Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis expfac.f 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
Assertion expfac ( 𝐴 ∈ ℂ → 𝐹 ⇝ 0 )

Proof

Step Hyp Ref Expression
1 expfac.f 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
2 nn0uz 0 = ( ℤ ‘ 0 )
3 0zd ( 𝐴 ∈ ℂ → 0 ∈ ℤ )
4 nn0ex 0 ∈ V
5 4 mptex ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) ) ∈ V
6 1 5 eqeltri 𝐹 ∈ V
7 6 a1i ( 𝐴 ∈ ℂ → 𝐹 ∈ V )
8 1 efcllem ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ )
9 oveq2 ( 𝑛 = 𝑚 → ( 𝐴𝑛 ) = ( 𝐴𝑚 ) )
10 fveq2 ( 𝑛 = 𝑚 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑚 ) )
11 9 10 oveq12d ( 𝑛 = 𝑚 → ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) = ( ( 𝐴𝑚 ) / ( ! ‘ 𝑚 ) ) )
12 simpr ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 )
13 eftcl ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐴𝑚 ) / ( ! ‘ 𝑚 ) ) ∈ ℂ )
14 1 11 12 13 fvmptd3 ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹𝑚 ) = ( ( 𝐴𝑚 ) / ( ! ‘ 𝑚 ) ) )
15 14 13 eqeltrd ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹𝑚 ) ∈ ℂ )
16 2 3 7 8 15 serf0 ( 𝐴 ∈ ℂ → 𝐹 ⇝ 0 )