| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdnncl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 2 3 | nnexpcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 5 | 4 | nncnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 6 | 5 | mulridd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ·  1 )  =  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) ) | 
						
							| 7 |  | nnexpcl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 9 | 8 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 10 |  | nnexpcl | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 12 | 11 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℕ ) | 
						
							| 14 | 13 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℕ ) | 
						
							| 16 | 15 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℤ ) | 
						
							| 17 |  | gcddvds | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 18 | 14 16 17 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 20 | 19 | simpld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐴 ) | 
						
							| 21 | 2 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℤ ) | 
						
							| 22 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℕ ) | 
						
							| 23 | 22 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℤ ) | 
						
							| 24 |  | dvdsexpim | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 25 | 21 23 3 24 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 26 | 20 25 | mpd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 27 | 19 | simprd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) | 
						
							| 28 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ∈  ℕ ) | 
						
							| 29 | 28 | nnzd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ∈  ℤ ) | 
						
							| 30 |  | dvdsexpim | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐵  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 31 | 21 29 3 30 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐵  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 32 | 27 31 | mpd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 33 |  | gcddiv | ⊢ ( ( ( ( 𝐴 ↑ 𝑁 )  ∈  ℤ  ∧  ( 𝐵 ↑ 𝑁 )  ∈  ℤ  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∈  ℕ )  ∧  ( ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∥  ( 𝐴 ↑ 𝑁 )  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∥  ( 𝐵 ↑ 𝑁 ) ) )  →  ( ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  =  ( ( ( 𝐴 ↑ 𝑁 )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  gcd  ( ( 𝐵 ↑ 𝑁 )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) ) ) ) | 
						
							| 34 | 9 12 4 26 32 33 | syl32anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  =  ( ( ( 𝐴 ↑ 𝑁 )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  gcd  ( ( 𝐵 ↑ 𝑁 )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) ) ) ) | 
						
							| 35 |  | nncn | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℂ ) | 
						
							| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 37 | 2 | nncnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℂ ) | 
						
							| 38 | 2 | nnne0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  gcd  𝐵 )  ≠  0 ) | 
						
							| 39 | 36 37 38 3 | expdivd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 )  =  ( ( 𝐴 ↑ 𝑁 )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) ) ) | 
						
							| 40 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 42 | 41 37 38 3 | expdivd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 )  =  ( ( 𝐵 ↑ 𝑁 )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) ) ) | 
						
							| 43 | 39 42 | oveq12d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 )  gcd  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 ) )  =  ( ( ( 𝐴 ↑ 𝑁 )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  gcd  ( ( 𝐵 ↑ 𝑁 )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) ) ) ) | 
						
							| 44 |  | gcddiv | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  ( 𝐴  gcd  𝐵 )  ∈  ℕ )  ∧  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) )  →  ( ( 𝐴  gcd  𝐵 )  /  ( 𝐴  gcd  𝐵 ) )  =  ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  gcd  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 45 | 23 29 2 19 44 | syl31anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  /  ( 𝐴  gcd  𝐵 ) )  =  ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  gcd  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 46 | 37 38 | dividd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 )  /  ( 𝐴  gcd  𝐵 ) )  =  1 ) | 
						
							| 47 | 45 46 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  gcd  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) )  =  1 ) | 
						
							| 48 |  | divgcdnn | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) | 
						
							| 49 | 22 29 48 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) | 
						
							| 50 | 49 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 51 |  | divgcdnnr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℤ )  →  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) | 
						
							| 52 | 28 23 51 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) | 
						
							| 53 | 52 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 54 |  | nn0rppwr | ⊢ ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ0  ∧  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  gcd  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) )  =  1  →  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 )  gcd  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 ) )  =  1 ) ) | 
						
							| 55 | 50 53 3 54 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  gcd  ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) )  =  1  →  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 )  gcd  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 ) )  =  1 ) ) | 
						
							| 56 | 47 55 | mpd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐴  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 )  gcd  ( ( 𝐵  /  ( 𝐴  gcd  𝐵 ) ) ↑ 𝑁 ) )  =  1 ) | 
						
							| 57 | 34 43 56 | 3eqtr2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  =  1 ) | 
						
							| 58 |  | gcdnncl | ⊢ ( ( ( 𝐴 ↑ 𝑁 )  ∈  ℕ  ∧  ( 𝐵 ↑ 𝑁 )  ∈  ℕ )  →  ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  ∈  ℕ ) | 
						
							| 59 | 58 | nncnd | ⊢ ( ( ( 𝐴 ↑ 𝑁 )  ∈  ℕ  ∧  ( 𝐵 ↑ 𝑁 )  ∈  ℕ )  →  ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  ∈  ℂ ) | 
						
							| 60 | 8 11 59 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  ∈  ℂ ) | 
						
							| 61 | 4 | nnne0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ≠  0 ) | 
						
							| 62 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 63 |  | divmul | ⊢ ( ( ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∈  ℂ  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ≠  0 ) )  →  ( ( ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  =  1  ↔  ( ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ·  1 )  =  ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) ) ) ) | 
						
							| 64 | 62 63 | mp3an2 | ⊢ ( ( ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  ∈  ℂ  ∧  ( ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ∈  ℂ  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ≠  0 ) )  →  ( ( ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  =  1  ↔  ( ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ·  1 )  =  ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) ) ) ) | 
						
							| 65 | 60 5 61 64 | syl12anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) )  /  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 ) )  =  1  ↔  ( ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ·  1 )  =  ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) ) ) ) | 
						
							| 66 | 57 65 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  ·  1 )  =  ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 67 | 6 66 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 𝑁 )  =  ( ( 𝐴 ↑ 𝑁 )  gcd  ( 𝐵 ↑ 𝑁 ) ) ) |