| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑧  =  𝐴  →  ( 1  ≤  𝑧  ↔  1  ≤  𝐴 ) ) | 
						
							| 2 | 1 | elrab | ⊢ ( 𝐴  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ↔  ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 ) ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ⊆  ℝ | 
						
							| 4 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 5 | 3 4 | sstri | ⊢ { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ⊆  ℂ | 
						
							| 6 |  | breq2 | ⊢ ( 𝑧  =  𝑥  →  ( 1  ≤  𝑧  ↔  1  ≤  𝑥 ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( 𝑥  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ↔  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑧  =  𝑦  →  ( 1  ≤  𝑧  ↔  1  ≤  𝑦 ) ) | 
						
							| 9 | 8 | elrab | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ↔  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑧  =  ( 𝑥  ·  𝑦 )  →  ( 1  ≤  𝑧  ↔  1  ≤  ( 𝑥  ·  𝑦 ) ) ) | 
						
							| 11 |  | remulcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 13 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 14 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 15 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 16 | 14 15 | pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  0  ≤  1 ) | 
						
							| 17 | 16 | jctl | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  𝑥  ∈  ℝ ) ) | 
						
							| 18 | 16 | jctl | ⊢ ( 𝑦  ∈  ℝ  →  ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  𝑦  ∈  ℝ ) ) | 
						
							| 19 |  | lemul12a | ⊢ ( ( ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  𝑥  ∈  ℝ )  ∧  ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  𝑦  ∈  ℝ ) )  →  ( ( 1  ≤  𝑥  ∧  1  ≤  𝑦 )  →  ( 1  ·  1 )  ≤  ( 𝑥  ·  𝑦 ) ) ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 1  ≤  𝑥  ∧  1  ≤  𝑦 )  →  ( 1  ·  1 )  ≤  ( 𝑥  ·  𝑦 ) ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  ( 1  ≤  𝑥  ∧  1  ≤  𝑦 ) )  →  ( 1  ·  1 )  ≤  ( 𝑥  ·  𝑦 ) ) | 
						
							| 22 | 13 21 | eqbrtrrid | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  ( 1  ≤  𝑥  ∧  1  ≤  𝑦 ) )  →  1  ≤  ( 𝑥  ·  𝑦 ) ) | 
						
							| 23 | 22 | an4s | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  1  ≤  ( 𝑥  ·  𝑦 ) ) | 
						
							| 24 | 10 12 23 | elrabd | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( 𝑥  ·  𝑦 )  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 } ) | 
						
							| 25 | 7 9 24 | syl2anb | ⊢ ( ( 𝑥  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ∧  𝑦  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 } )  →  ( 𝑥  ·  𝑦 )  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 } ) | 
						
							| 26 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 27 |  | breq2 | ⊢ ( 𝑧  =  1  →  ( 1  ≤  𝑧  ↔  1  ≤  1 ) ) | 
						
							| 28 | 27 | elrab | ⊢ ( 1  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ↔  ( 1  ∈  ℝ  ∧  1  ≤  1 ) ) | 
						
							| 29 | 14 26 28 | mpbir2an | ⊢ 1  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 } | 
						
							| 30 | 5 25 29 | expcllem | ⊢ ( ( 𝐴  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 } ) | 
						
							| 31 | 2 30 | sylanbr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 } ) | 
						
							| 32 | 31 | 3impa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ≤  𝐴  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 } ) | 
						
							| 33 | 32 | 3com23 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  1  ≤  𝐴 )  →  ( 𝐴 ↑ 𝑁 )  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 } ) | 
						
							| 34 |  | breq2 | ⊢ ( 𝑧  =  ( 𝐴 ↑ 𝑁 )  →  ( 1  ≤  𝑧  ↔  1  ≤  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 35 | 34 | elrab | ⊢ ( ( 𝐴 ↑ 𝑁 )  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  ↔  ( ( 𝐴 ↑ 𝑁 )  ∈  ℝ  ∧  1  ≤  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 36 | 35 | simprbi | ⊢ ( ( 𝐴 ↑ 𝑁 )  ∈  { 𝑧  ∈  ℝ  ∣  1  ≤  𝑧 }  →  1  ≤  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 37 | 33 36 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  1  ≤  𝐴 )  →  1  ≤  ( 𝐴 ↑ 𝑁 ) ) |