Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
expge1d
Metamath Proof Explorer
Description: A real greater than or equal to 1 raised to a nonnegative integer is
greater than or equal to 1. (Contributed by Mario Carneiro , 28-May-2016)
Ref
Expression
Hypotheses
reexpcld.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
reexpcld.2
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 )
expge1d.3
⊢ ( 𝜑 → 1 ≤ 𝐴 )
Assertion
expge1d
⊢ ( 𝜑 → 1 ≤ ( 𝐴 ↑ 𝑁 ) )
Proof
Step
Hyp
Ref
Expression
1
reexpcld.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
2
reexpcld.2
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 )
3
expge1d.3
⊢ ( 𝜑 → 1 ≤ 𝐴 )
4
expge1
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴 ↑ 𝑁 ) )
5
1 2 3 4
syl3anc
⊢ ( 𝜑 → 1 ≤ ( 𝐴 ↑ 𝑁 ) )