Metamath Proof Explorer


Theorem expge1d

Description: A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses reexpcld.1 ( 𝜑𝐴 ∈ ℝ )
reexpcld.2 ( 𝜑𝑁 ∈ ℕ0 )
expge1d.3 ( 𝜑 → 1 ≤ 𝐴 )
Assertion expge1d ( 𝜑 → 1 ≤ ( 𝐴𝑁 ) )

Proof

Step Hyp Ref Expression
1 reexpcld.1 ( 𝜑𝐴 ∈ ℝ )
2 reexpcld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 expge1d.3 ( 𝜑 → 1 ≤ 𝐴 )
4 expge1 ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴𝑁 ) )
5 1 2 3 4 syl3anc ( 𝜑 → 1 ≤ ( 𝐴𝑁 ) )