Metamath Proof Explorer


Theorem expghm

Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses expghm.m 𝑀 = ( mulGrp ‘ ℂfld )
expghm.u 𝑈 = ( 𝑀s ( ℂ ∖ { 0 } ) )
Assertion expghm ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) )

Proof

Step Hyp Ref Expression
1 expghm.m 𝑀 = ( mulGrp ‘ ℂfld )
2 expghm.u 𝑈 = ( 𝑀s ( ℂ ∖ { 0 } ) )
3 expclzlem ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( 𝐴𝑥 ) ∈ ( ℂ ∖ { 0 } ) )
4 3 3expa ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐴𝑥 ) ∈ ( ℂ ∖ { 0 } ) )
5 4 fmpttd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) )
6 expaddz ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴𝑦 ) · ( 𝐴𝑧 ) ) )
7 zaddcl ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑦 + 𝑧 ) ∈ ℤ )
8 7 adantl ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑦 + 𝑧 ) ∈ ℤ )
9 oveq2 ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐴𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) )
10 eqid ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) )
11 ovex ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ∈ V
12 9 10 11 fvmpt ( ( 𝑦 + 𝑧 ) ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) )
13 8 12 syl ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) )
14 oveq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥 ) = ( 𝐴𝑦 ) )
15 ovex ( 𝐴𝑦 ) ∈ V
16 14 10 15 fvmpt ( 𝑦 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑦 ) = ( 𝐴𝑦 ) )
17 oveq2 ( 𝑥 = 𝑧 → ( 𝐴𝑥 ) = ( 𝐴𝑧 ) )
18 ovex ( 𝐴𝑧 ) ∈ V
19 17 10 18 fvmpt ( 𝑧 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑧 ) = ( 𝐴𝑧 ) )
20 16 19 oveqan12d ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴𝑦 ) · ( 𝐴𝑧 ) ) )
21 20 adantl ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴𝑦 ) · ( 𝐴𝑧 ) ) )
22 6 13 21 3eqtr4d ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑧 ) ) )
23 22 ralrimivva ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑧 ) ) )
24 zringgrp ring ∈ Grp
25 cnring fld ∈ Ring
26 cnfldbas ℂ = ( Base ‘ ℂfld )
27 cnfld0 0 = ( 0g ‘ ℂfld )
28 cndrng fld ∈ DivRing
29 26 27 28 drngui ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld )
30 1 oveq1i ( 𝑀s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
31 2 30 eqtri 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
32 29 31 unitgrp ( ℂfld ∈ Ring → 𝑈 ∈ Grp )
33 25 32 ax-mp 𝑈 ∈ Grp
34 24 33 pm3.2i ( ℤring ∈ Grp ∧ 𝑈 ∈ Grp )
35 zringbas ℤ = ( Base ‘ ℤring )
36 difss ( ℂ ∖ { 0 } ) ⊆ ℂ
37 1 26 mgpbas ℂ = ( Base ‘ 𝑀 )
38 2 37 ressbas2 ( ( ℂ ∖ { 0 } ) ⊆ ℂ → ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑈 ) )
39 36 38 ax-mp ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑈 )
40 zringplusg + = ( +g ‘ ℤring )
41 29 fvexi ( ℂ ∖ { 0 } ) ∈ V
42 cnfldmul · = ( .r ‘ ℂfld )
43 1 42 mgpplusg · = ( +g𝑀 )
44 2 43 ressplusg ( ( ℂ ∖ { 0 } ) ∈ V → · = ( +g𝑈 ) )
45 41 44 ax-mp · = ( +g𝑈 )
46 35 39 40 45 isghm ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ↔ ( ( ℤring ∈ Grp ∧ 𝑈 ∈ Grp ) ∧ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) ∧ ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑧 ) ) ) ) )
47 34 46 mpbiran ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ↔ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) ∧ ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ‘ 𝑧 ) ) ) )
48 5 23 47 sylanbrc ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝐴𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) )