Step |
Hyp |
Ref |
Expression |
1 |
|
expghm.m |
⊢ 𝑀 = ( mulGrp ‘ ℂfld ) |
2 |
|
expghm.u |
⊢ 𝑈 = ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) |
3 |
|
expclzlem |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
4 |
3
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐴 ↑ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
5 |
4
|
fmpttd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) ) |
6 |
|
expaddz |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
7 |
|
zaddcl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑦 + 𝑧 ) ∈ ℤ ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑦 + 𝑧 ) ∈ ℤ ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) |
11 |
|
ovex |
⊢ ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ∈ V |
12 |
9 10 11
|
fvmpt |
⊢ ( ( 𝑦 + 𝑧 ) ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
13 |
8 12
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( 𝐴 ↑ ( 𝑦 + 𝑧 ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) |
15 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑦 ) ∈ V |
16 |
14 10 15
|
fvmpt |
⊢ ( 𝑦 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 ↑ 𝑦 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑧 ) ) |
18 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑧 ) ∈ V |
19 |
17 10 18
|
fvmpt |
⊢ ( 𝑧 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 ↑ 𝑧 ) ) |
20 |
16 19
|
oveqan12d |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) = ( ( 𝐴 ↑ 𝑦 ) · ( 𝐴 ↑ 𝑧 ) ) ) |
22 |
6 13 21
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
23 |
22
|
ralrimivva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) |
24 |
|
zringgrp |
⊢ ℤring ∈ Grp |
25 |
|
cnring |
⊢ ℂfld ∈ Ring |
26 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
27 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
28 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
29 |
26 27 28
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
30 |
1
|
oveq1i |
⊢ ( 𝑀 ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
31 |
2 30
|
eqtri |
⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
32 |
29 31
|
unitgrp |
⊢ ( ℂfld ∈ Ring → 𝑈 ∈ Grp ) |
33 |
25 32
|
ax-mp |
⊢ 𝑈 ∈ Grp |
34 |
24 33
|
pm3.2i |
⊢ ( ℤring ∈ Grp ∧ 𝑈 ∈ Grp ) |
35 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
36 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
37 |
1 26
|
mgpbas |
⊢ ℂ = ( Base ‘ 𝑀 ) |
38 |
2 37
|
ressbas2 |
⊢ ( ( ℂ ∖ { 0 } ) ⊆ ℂ → ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑈 ) ) |
39 |
36 38
|
ax-mp |
⊢ ( ℂ ∖ { 0 } ) = ( Base ‘ 𝑈 ) |
40 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
41 |
29
|
fvexi |
⊢ ( ℂ ∖ { 0 } ) ∈ V |
42 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
43 |
1 42
|
mgpplusg |
⊢ · = ( +g ‘ 𝑀 ) |
44 |
2 43
|
ressplusg |
⊢ ( ( ℂ ∖ { 0 } ) ∈ V → · = ( +g ‘ 𝑈 ) ) |
45 |
41 44
|
ax-mp |
⊢ · = ( +g ‘ 𝑈 ) |
46 |
35 39 40 45
|
isghm |
⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ↔ ( ( ℤring ∈ Grp ∧ 𝑈 ∈ Grp ) ∧ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) ∧ ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) ) ) |
47 |
34 46
|
mpbiran |
⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ↔ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ ∖ { 0 } ) ∧ ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦 + 𝑧 ) ) = ( ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 ) · ( ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) ) |
48 |
5 23 47
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝐴 ↑ 𝑥 ) ) ∈ ( ℤring GrpHom 𝑈 ) ) |