Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝑁 ∈ ℕ ) |
5 |
4
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝑁 ∈ ℕ0 ) |
6 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
7 |
3 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
8 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
9 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
10 |
4 9
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
11 |
|
ltle |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 < 𝐴 → 1 ≤ 𝐴 ) ) |
12 |
1 3 11
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 < 𝐴 → 1 ≤ 𝐴 ) ) |
13 |
8 12
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ≤ 𝐴 ) |
14 |
|
expge1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
15 |
3 10 13 14
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
16 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ) |
17 |
3 10 16
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ) |
18 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) |
19 |
|
0lt1 |
⊢ 0 < 1 |
20 |
19
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 < 1 ) |
21 |
18 2 3 20 8
|
lttrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
22 |
|
lemul1 |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ↔ ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) ) |
23 |
2 17 3 21 22
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ↔ ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) ) |
24 |
15 23
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
25 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℂ ) |
27 |
26
|
mulid2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 · 𝐴 ) = 𝐴 ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 = ( 1 · 𝐴 ) ) |
29 |
|
expm1t |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
30 |
26 4 29
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
31 |
24 28 30
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ≤ ( 𝐴 ↑ 𝑁 ) ) |
32 |
2 3 7 8 31
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < ( 𝐴 ↑ 𝑁 ) ) |