| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  1  ∈  ℝ ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  𝑁  ∈  ℕ ) | 
						
							| 5 | 4 | nnnn0d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  ( 𝐴 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  1  <  𝐴 ) | 
						
							| 9 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 10 | 4 9 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 11 |  | ltle | ⊢ ( ( 1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 1  <  𝐴  →  1  ≤  𝐴 ) ) | 
						
							| 12 | 1 3 11 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  ( 1  <  𝐴  →  1  ≤  𝐴 ) ) | 
						
							| 13 | 8 12 | mpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  1  ≤  𝐴 ) | 
						
							| 14 |  | expge1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑁  −  1 )  ∈  ℕ0  ∧  1  ≤  𝐴 )  →  1  ≤  ( 𝐴 ↑ ( 𝑁  −  1 ) ) ) | 
						
							| 15 | 3 10 13 14 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  1  ≤  ( 𝐴 ↑ ( 𝑁  −  1 ) ) ) | 
						
							| 16 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝑁  −  1 )  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑁  −  1 ) )  ∈  ℝ ) | 
						
							| 17 | 3 10 16 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  ( 𝐴 ↑ ( 𝑁  −  1 ) )  ∈  ℝ ) | 
						
							| 18 |  | 0red | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 19 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  0  <  1 ) | 
						
							| 21 | 18 2 3 20 8 | lttrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 22 |  | lemul1 | ⊢ ( ( 1  ∈  ℝ  ∧  ( 𝐴 ↑ ( 𝑁  −  1 ) )  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 1  ≤  ( 𝐴 ↑ ( 𝑁  −  1 ) )  ↔  ( 1  ·  𝐴 )  ≤  ( ( 𝐴 ↑ ( 𝑁  −  1 ) )  ·  𝐴 ) ) ) | 
						
							| 23 | 2 17 3 21 22 | syl112anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  ( 1  ≤  ( 𝐴 ↑ ( 𝑁  −  1 ) )  ↔  ( 1  ·  𝐴 )  ≤  ( ( 𝐴 ↑ ( 𝑁  −  1 ) )  ·  𝐴 ) ) ) | 
						
							| 24 | 15 23 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  ( 1  ·  𝐴 )  ≤  ( ( 𝐴 ↑ ( 𝑁  −  1 ) )  ·  𝐴 ) ) | 
						
							| 25 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  𝐴  ∈  ℂ ) | 
						
							| 27 | 26 | mullidd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  𝐴  =  ( 1  ·  𝐴 ) ) | 
						
							| 29 |  | expm1t | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴 ↑ 𝑁 )  =  ( ( 𝐴 ↑ ( 𝑁  −  1 ) )  ·  𝐴 ) ) | 
						
							| 30 | 26 4 29 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  ( 𝐴 ↑ 𝑁 )  =  ( ( 𝐴 ↑ ( 𝑁  −  1 ) )  ·  𝐴 ) ) | 
						
							| 31 | 24 28 30 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  𝐴  ≤  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 32 | 2 3 7 8 31 | ltletrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ  ∧  1  <  𝐴 )  →  1  <  ( 𝐴 ↑ 𝑁 ) ) |