| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 3 | 2 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  0  ∈  ℕ0 ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 6 | 4 5 | eleqtrdi | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 7 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  0  ≤  𝐴 ) | 
						
							| 8 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ≤  1 ) | 
						
							| 9 |  | leexp2r | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 0 ) )  ∧  ( 0  ≤  𝐴  ∧  𝐴  ≤  1 ) )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 0 ) ) | 
						
							| 10 | 1 3 6 7 8 9 | syl32anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ≤  ( 𝐴 ↑ 0 ) ) | 
						
							| 11 | 1 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 12 |  | exp0 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 14 | 10 13 | breqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴  ∧  𝐴  ≤  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  ≤  1 ) |